\(\int \cos (c+d x) (a+a \sec (c+d x))^3 (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [325]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 111 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a^3 B x+\frac {a^3 (7 B+5 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {5 a^3 (B+C) \tan (c+d x)}{2 d}+\frac {a C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac {(3 B+5 C) \left (a^3+a^3 \sec (c+d x)\right ) \tan (c+d x)}{6 d} \]

[Out]

a^3*B*x+1/2*a^3*(7*B+5*C)*arctanh(sin(d*x+c))/d+5/2*a^3*(B+C)*tan(d*x+c)/d+1/3*a*C*(a+a*sec(d*x+c))^2*tan(d*x+
c)/d+1/6*(3*B+5*C)*(a^3+a^3*sec(d*x+c))*tan(d*x+c)/d

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {4157, 4002, 3999, 3852, 8, 3855} \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a^3 (7 B+5 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {5 a^3 (B+C) \tan (c+d x)}{2 d}+\frac {(3 B+5 C) \tan (c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{6 d}+a^3 B x+\frac {a C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d} \]

[In]

Int[Cos[c + d*x]*(a + a*Sec[c + d*x])^3*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

a^3*B*x + (a^3*(7*B + 5*C)*ArcTanh[Sin[c + d*x]])/(2*d) + (5*a^3*(B + C)*Tan[c + d*x])/(2*d) + (a*C*(a + a*Sec
[c + d*x])^2*Tan[c + d*x])/(3*d) + ((3*B + 5*C)*(a^3 + a^3*Sec[c + d*x])*Tan[c + d*x])/(6*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3999

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[a*c*x, x]
 + (Dist[b*d, Int[Csc[e + f*x]^2, x], x] + Dist[b*c + a*d, Int[Csc[e + f*x], x], x]) /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]

Rule 4002

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(-b)
*d*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*c
*m + (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
GtQ[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 4157

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rubi steps \begin{align*} \text {integral}& = \int (a+a \sec (c+d x))^3 (B+C \sec (c+d x)) \, dx \\ & = \frac {a C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac {1}{3} \int (a+a \sec (c+d x))^2 (3 a B+a (3 B+5 C) \sec (c+d x)) \, dx \\ & = \frac {a C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac {(3 B+5 C) \left (a^3+a^3 \sec (c+d x)\right ) \tan (c+d x)}{6 d}+\frac {1}{6} \int (a+a \sec (c+d x)) \left (6 a^2 B+15 a^2 (B+C) \sec (c+d x)\right ) \, dx \\ & = a^3 B x+\frac {a C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac {(3 B+5 C) \left (a^3+a^3 \sec (c+d x)\right ) \tan (c+d x)}{6 d}+\frac {1}{2} \left (5 a^3 (B+C)\right ) \int \sec ^2(c+d x) \, dx+\frac {1}{2} \left (a^3 (7 B+5 C)\right ) \int \sec (c+d x) \, dx \\ & = a^3 B x+\frac {a^3 (7 B+5 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {a C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac {(3 B+5 C) \left (a^3+a^3 \sec (c+d x)\right ) \tan (c+d x)}{6 d}-\frac {\left (5 a^3 (B+C)\right ) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{2 d} \\ & = a^3 B x+\frac {a^3 (7 B+5 C) \text {arctanh}(\sin (c+d x))}{2 d}+\frac {5 a^3 (B+C) \tan (c+d x)}{2 d}+\frac {a C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac {(3 B+5 C) \left (a^3+a^3 \sec (c+d x)\right ) \tan (c+d x)}{6 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.09 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.63 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {a^3 \left (6 B d x+3 (7 B+5 C) \text {arctanh}(\sin (c+d x))+3 (6 B+8 C+(B+3 C) \sec (c+d x)) \tan (c+d x)+2 C \tan ^3(c+d x)\right )}{6 d} \]

[In]

Integrate[Cos[c + d*x]*(a + a*Sec[c + d*x])^3*(B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a^3*(6*B*d*x + 3*(7*B + 5*C)*ArcTanh[Sin[c + d*x]] + 3*(6*B + 8*C + (B + 3*C)*Sec[c + d*x])*Tan[c + d*x] + 2*
C*Tan[c + d*x]^3))/(6*d)

Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.55

method result size
parallelrisch \(\frac {a^{3} \left (-\frac {21 \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \left (B +\frac {5 C}{7}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2}+\frac {21 \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) \left (B +\frac {5 C}{7}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2}+B x d \cos \left (3 d x +3 c \right )+\left (B +3 C \right ) \sin \left (2 d x +2 c \right )+\left (3 B +\frac {11 C}{3}\right ) \sin \left (3 d x +3 c \right )+3 B x d \cos \left (d x +c \right )+3 \sin \left (d x +c \right ) \left (B +\frac {5 C}{3}\right )\right )}{d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(172\)
derivativedivides \(\frac {B \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-a^{3} C \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+3 B \,a^{3} \tan \left (d x +c \right )+3 a^{3} C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 B \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 a^{3} C \tan \left (d x +c \right )+B \,a^{3} \left (d x +c \right )+a^{3} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(176\)
default \(\frac {B \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-a^{3} C \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+3 B \,a^{3} \tan \left (d x +c \right )+3 a^{3} C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 B \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 a^{3} C \tan \left (d x +c \right )+B \,a^{3} \left (d x +c \right )+a^{3} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(176\)
risch \(a^{3} B x -\frac {i a^{3} \left (3 B \,{\mathrm e}^{5 i \left (d x +c \right )}+9 C \,{\mathrm e}^{5 i \left (d x +c \right )}-18 B \,{\mathrm e}^{4 i \left (d x +c \right )}-18 C \,{\mathrm e}^{4 i \left (d x +c \right )}-36 B \,{\mathrm e}^{2 i \left (d x +c \right )}-48 C \,{\mathrm e}^{2 i \left (d x +c \right )}-3 B \,{\mathrm e}^{i \left (d x +c \right )}-9 C \,{\mathrm e}^{i \left (d x +c \right )}-18 B -22 C \right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}-\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{2 d}-\frac {5 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{2 d}+\frac {7 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{2 d}+\frac {5 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{2 d}\) \(221\)
norman \(\frac {a^{3} B x +a^{3} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\frac {a^{3} \left (7 B +11 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-3 a^{3} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+2 a^{3} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+2 a^{3} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-3 a^{3} B x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-\frac {5 a^{3} \left (B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}-\frac {2 a^{3} \left (B +3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}-\frac {4 a^{3} \left (9 B +10 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}+\frac {4 a^{3} \left (9 B +10 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{3 d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{4}}-\frac {a^{3} \left (7 B +5 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {a^{3} \left (7 B +5 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(304\)

[In]

int(cos(d*x+c)*(a+a*sec(d*x+c))^3*(B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

a^3*(-21/2*(1/3*cos(3*d*x+3*c)+cos(d*x+c))*(B+5/7*C)*ln(tan(1/2*d*x+1/2*c)-1)+21/2*(1/3*cos(3*d*x+3*c)+cos(d*x
+c))*(B+5/7*C)*ln(tan(1/2*d*x+1/2*c)+1)+B*x*d*cos(3*d*x+3*c)+(B+3*C)*sin(2*d*x+2*c)+(3*B+11/3*C)*sin(3*d*x+3*c
)+3*B*x*d*cos(d*x+c)+3*sin(d*x+c)*(B+5/3*C))/d/(cos(3*d*x+3*c)+3*cos(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.27 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {12 \, B a^{3} d x \cos \left (d x + c\right )^{3} + 3 \, {\left (7 \, B + 5 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (7 \, B + 5 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (9 \, B + 11 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 3 \, {\left (B + 3 \, C\right )} a^{3} \cos \left (d x + c\right ) + 2 \, C a^{3}\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^3*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/12*(12*B*a^3*d*x*cos(d*x + c)^3 + 3*(7*B + 5*C)*a^3*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(7*B + 5*C)*a^3
*cos(d*x + c)^3*log(-sin(d*x + c) + 1) + 2*(2*(9*B + 11*C)*a^3*cos(d*x + c)^2 + 3*(B + 3*C)*a^3*cos(d*x + c) +
 2*C*a^3)*sin(d*x + c))/(d*cos(d*x + c)^3)

Sympy [F]

\[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=a^{3} \left (\int B \cos {\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int 3 B \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int 3 B \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int B \cos {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int C \cos {\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}\, dx + \int 3 C \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}\, dx + \int 3 C \cos {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}\, dx + \int C \cos {\left (c + d x \right )} \sec ^{5}{\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))**3*(B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

a**3*(Integral(B*cos(c + d*x)*sec(c + d*x), x) + Integral(3*B*cos(c + d*x)*sec(c + d*x)**2, x) + Integral(3*B*
cos(c + d*x)*sec(c + d*x)**3, x) + Integral(B*cos(c + d*x)*sec(c + d*x)**4, x) + Integral(C*cos(c + d*x)*sec(c
 + d*x)**2, x) + Integral(3*C*cos(c + d*x)*sec(c + d*x)**3, x) + Integral(3*C*cos(c + d*x)*sec(c + d*x)**4, x)
 + Integral(C*cos(c + d*x)*sec(c + d*x)**5, x))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 212 vs. \(2 (103) = 206\).

Time = 0.21 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.91 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {12 \, {\left (d x + c\right )} B a^{3} + 4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C a^{3} - 3 \, B a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 9 \, C a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 18 \, B a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 6 \, C a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 36 \, B a^{3} \tan \left (d x + c\right ) + 36 \, C a^{3} \tan \left (d x + c\right )}{12 \, d} \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^3*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/12*(12*(d*x + c)*B*a^3 + 4*(tan(d*x + c)^3 + 3*tan(d*x + c))*C*a^3 - 3*B*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2
 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 9*C*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(si
n(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 18*B*a^3*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 6*C*a^3*
(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) + 36*B*a^3*tan(d*x + c) + 36*C*a^3*tan(d*x + c))/d

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.70 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {6 \, {\left (d x + c\right )} B a^{3} + 3 \, {\left (7 \, B a^{3} + 5 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (7 \, B a^{3} + 5 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (15 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 15 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 36 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 40 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 21 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 33 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^3*(B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/6*(6*(d*x + c)*B*a^3 + 3*(7*B*a^3 + 5*C*a^3)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(7*B*a^3 + 5*C*a^3)*log(
abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(15*B*a^3*tan(1/2*d*x + 1/2*c)^5 + 15*C*a^3*tan(1/2*d*x + 1/2*c)^5 - 36*B*a
^3*tan(1/2*d*x + 1/2*c)^3 - 40*C*a^3*tan(1/2*d*x + 1/2*c)^3 + 21*B*a^3*tan(1/2*d*x + 1/2*c) + 33*C*a^3*tan(1/2
*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d

Mupad [B] (verification not implemented)

Time = 16.03 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.88 \[ \int \cos (c+d x) (a+a \sec (c+d x))^3 \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2\,B\,a^3\,\mathrm {atan}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {7\,B\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {5\,C\,a^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}+\frac {3\,B\,a^3\,\sin \left (c+d\,x\right )}{d\,\cos \left (c+d\,x\right )}+\frac {B\,a^3\,\sin \left (c+d\,x\right )}{2\,d\,{\cos \left (c+d\,x\right )}^2}+\frac {11\,C\,a^3\,\sin \left (c+d\,x\right )}{3\,d\,\cos \left (c+d\,x\right )}+\frac {3\,C\,a^3\,\sin \left (c+d\,x\right )}{2\,d\,{\cos \left (c+d\,x\right )}^2}+\frac {C\,a^3\,\sin \left (c+d\,x\right )}{3\,d\,{\cos \left (c+d\,x\right )}^3} \]

[In]

int(cos(c + d*x)*(B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^3,x)

[Out]

(2*B*a^3*atan(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (7*B*a^3*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)
))/d + (5*C*a^3*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/d + (3*B*a^3*sin(c + d*x))/(d*cos(c + d*x)) + (B
*a^3*sin(c + d*x))/(2*d*cos(c + d*x)^2) + (11*C*a^3*sin(c + d*x))/(3*d*cos(c + d*x)) + (3*C*a^3*sin(c + d*x))/
(2*d*cos(c + d*x)^2) + (C*a^3*sin(c + d*x))/(3*d*cos(c + d*x)^3)